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A B S T R A C T   

The visual system is sensitive to statistical properties of complex scenes and can encode feature probability 
distributions in detail. But does the brain use these statistics to build probabilistic models of the ever-changing 
visual input? To investigate this, we examined how observers temporally integrate two different orientation 
distributions from sequentially presented visual search trials. If the encoded probabilistic information is used in a 
Bayesian optimal way, observers should weigh more reliable information more strongly, such as feature distri
butions with low variance. We therefore manipulated the variance of the two feature distributions. Participants 
performed sequential odd-one-out visual search for an oddly oriented line among distractors. During successive 
learning trials, the distractor orientations were sampled from two different Gaussian distributions on alternating 
trials. Then, observers performed a ‘test trial’ where the orientations of the target and distractors were switched, 
allowing us to assess observer’s internal representation of distractor distributions based on changes in response 
times. In three experiments we observed that observer’s search times on test trials depended mainly on the very 
last learning trial, indicating a strong recency effect. Since temporal integration has been previously observed 
with this method, we conclude that when the input is unreliable, the visual system relies more on the most recent 
stimulus. This indicates that the visual system prefers to utilize sensory history when the statistical properties of 
the environment are relatively stable.   

1. Introduction 

The visual system can be flexible and adaptable in the face of changes 
to the temporal context of visual input. Temporal effects on visual 
processing can be observed on various timescales, from developmental 
changes to recent sensory exposure. Studying such effects of sensory 
history provides important insights for understanding the nature of vi
sual representations, the mechanisms that determine how they are 
formed, and the visual phenomenology resulting from them. 

Many effects of recent sensory history on visual processing have been 
well studied, such as adaptation (Kohn, 2007; Webster, 2015), percep
tual learning (Sasaki, Nanez, & Watanabe, 2010; Dosher & Lu, 2017), 
priming (Kristjánsson & Campana, 2010; Maljkovic & Nakayama, 
1994), and serial dependence (Fischer & Whitney, 2014). While these 
temporal effects may not have completely distinct underlying 

mechanisms (e.g., Larsson & Smith, 2012; Walther, Schweinberger, 
Kaiser, & Kovács, 2013), they can be observed independently of one 
another. 

Among these temporal effects, intertrial priming (Maljkovic & 
Nakayama, 1994), where observers’ search times decrease as the same 
target feature is repeated in a series of odd-one-out search trials, pro
vides an ideal paradigm to study how the visual system encodes complex 
probabilistic visual information. This is because such priming effects 
cannot be explained by either the low-level neural response dynamics of 
feature receptors, nor high-level influences from post-perceptual pro
cesses. For example, such priming effects are not retinotopic (Tower- 
Richardi, Leber, & Golomb, 2016), indicating that they cannot be 
explained by low-level adaptation mechanisms. They have also been 
observed independently of observers’ expectations or perceptual 
learning (Maljkovic & Nakayama, 1996; Wang, Kristjansson, & 
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Nakayama, 2005; Becker, 2008; Sigurdardottir, Kristjánsson, & Driver, 
2008; Shurygina, Kristjánsson, Tudge, & Chetverikov, 2019; for review 
see Kristjánsson & Ásgeirsson, 2019) or priming of responses (Goolsby & 
Suzuki, 2001; Sigurdardottir et al., 2008). Kristjánsson and Driver 
(2008) demonstrated that similar priming effects in visual search also 
occur from repetition of distractor features, which means that the visual 
information is encoded with respect to the role it plays (e.g., target vs. 
distractors) in completing a perceptual task. Priming effects reflect 
accumulation of information about target and distractor features over 
successive search trials and therefore provide an effective experimental 
tool for investigating how the visual system accumulates and represents 
information in a dynamic environment (Chetverikov, Campana, & 
Kristjánsson, 2017d). 

While target and distractor priming in visual search have been 
independently observed, they can also interact. For example, if an odd- 
one-out search target has similar features as the distractors on a pre
ceding search trial, search times will increase (Kristjánsson & Driver, 
2008; Lamy, Antebi, Aviani, & Carmel, 2008). Importantly, this decrease 
in search efficiency following a “role-reversal” of target and distractor 
features is modulated by the similarity between the target on the current 
search trial and distractors on preceding trials. Using a method later 
coined feature distribution learning (FDL), Chetverikov, Campana & 
Kristjánsson (2016, 2017b, 2017c) demonstrated that search times 
following role-reversals as a function of the orientation difference be
tween the target after role-reversal and the mean orientation of pre
ceding distractor lines could be used to probe observers’ representations 
of distractor orientation distributions (Fig. 1, see Chetverikov, 
Hansmann-Roth, Tanrıkulu, and Kristjánsson (2019), for review). Their 
observers searched for an oddly oriented target in a series of learning 
trials where distractor priming was induced by sampling the distractor 
orientations from the same distribution. Role reversal effects were 
induced on test trials by swapping the target and distractor features. The 
strength of role reversals was manipulated by varying the orientation 
difference between the target on the test trial and the mean of the dis
tractor distribution on the preceding learning trials. 

A key finding in Chetverikov, Campana, and Kristjánsson (2016) was 
that search times on test trials as a function of the similarity between 
targets on test trials and distractors on preceding learning trials followed 
the shape of the probability distribution of distractor orientations on the 
learning trials. This occurred even for distractor distributions on 
learning trials with the same mean and range (or variance) but different 
shapes (Gaussian vs. uniform) or different skewness. Observers could 
encode surprisingly detailed information about visual feature distribu
tions going beyond the summary statistics mean and variance. They can 
also encode complex orientation distributions, such as bimodal ones 
(Chetverikov et al., 2017b; Chetverikov et al., 2020), hue distributions 
of isoluminant colored items (Chetverikov, Campana, & Kristjánsson, 
2017a; Hansmann-Roth, Chetverikov, & Kristjánsson, 2019), and when 
the search array appeared in the peripheral visual field (Tanrıkulu, 
Chetverikov, & Kristjánsson, 2020). Notably the learning required a 
certain minimum number of items on each search trial (Chetverikov, 
Campana, & Kristjánsson, 2017c). 

Importantly, these results contrast with research on ensemble 
perception that suggests that the visual system extracts summary sta
tistical information from ensembles of similar visual items (for reviews, 
see Alvarez, 2011; Haberman & Whitney, 2012; Whitney & Yamanashi 
Leib, 2018). According to this literature, observers cannot estimate 
higher-order properties of feature distributions such as skewness and 
kurtosis (Atchley & Andersen, 1995; Dakin & Watt, 1997; Dakin, 2015). 
Even though the FDL method does not show that observers can delib
erately estimate such higher-order properties, it reveals that such 
properties are encoded by the visual system. This discrepancy is most 
likely due to the fact that the FDL method involves priming effects rather 
than observers’ explicit judgments of ensemble properties. This implicit 
nature of FDL reveals how the visual system encodes visual feature 
distributions without requiring explicit access to this visual information 

(Hansmann-Roth, Kristjánsson, Whitney, & Chetverikov, 2021). 

1.1. Current aims 

The literature on feature ensemble encoding has mostly focused on 
spatial integration of features. However, in the real world, the visual 
input is continuous and dynamic. While the temporal integration of vi
sual features into ensembles has been studied (Albrecht & Scholl, 2010; 
Chong & Treisman, 2003; Haberman, Harp, & Whitney, 2009; Hubert- 
Wallander & Boynton, 2015; Whiting & Oriet, 2011), little work is 
available on temporal integration of different ensembles. Oriet and 
Hozempa (2016) demonstrated that observers can accurately judge the 
statistical properties of sets of visual items presented temporally over an 
extended duration. Crawford, Corbin, and Landy (2019) showed that 
observers’ judgments of ensemble properties of a display can be biased 
by previously seen displays. Here, we assessed such potential combi
nation of spatial and temporal integration of visual feature distributions, 
without requiring explicit perceptual judgements. 

While the visual system is clearly sensitive to details of feature dis
tributions (Chetverikov et al., 2016; Chetverikov et al., 2017a; Chet
verikov et al., 2017b; Chetverikov et al., 2017c), it is unclear how the 
visual system uses this information. Despite this observed sensitivity to 
detailed statistical information, observers might not be able to use it to 
build probabilistic representations that integrate information from the 
constant flow of visual input.1 Even though previous work with the FDL 
method (Chetverikov, Campana, & Kristjánsson, 2017b; Chetverikov 
et al., 2020) suggests that observers can build probabilistic representa
tion of feature distributions, it is still not known to what extent and in 
what ways this detailed probabilistic information is utilized by the visual 
system. We investigated this using FDL, but critically, we altered the 
dynamics of the learning trials. Our crucial manipulation was that dis
tractor orientations on learning trials were sampled from two different 
Gaussian distributions with different means and standard deviations 
(SD) in alternating order. Search times on test trials (following a streak of 
such alternating distractor distributions) as a function of similarity be
tween target and previous distractors will therefore reflect how ob
servers integrate the two distractor distributions. 

In an odd-one-out search task, observers are forced to process all 
search items to find out the most dissimilar one with respect to all the 
others. As observers perform a sequence of search trials during the 
learning streak, they gradually form a probabilistic template for dis
tractors which helps in finding the target quicker. In other words, ob
servers are building an estimate of the underlying distractor distribution 
throughout the learning streak, even though they are not explicitly 
instructed to do so (Chetverikov et al., 2019; Chetverikov et al., 2020). 
We therefore hypothesize that the SD of the distractor distributions 
would influence how the two distributions are integrated. The search 
trials with more variable distractors (higher SDs) would provide less 
reliable information about the mean of the underlying orientation dis
tribution. In other words, if the visual system obtains samples from the 
search displays to estimate the mean of the distractors, this estimate will 
be less precise when the distractors are more variable. Therefore, if the 
visual system uses detailed probabilistic information about distractor 
distributions, this integration should accord with classic Bayesian inte
gration principles (e.g., Knill & Richards, 1996; Körding & Wolpert, 
2006; Knill, 2007), where observers weigh more reliable information 
more strongly, in our case the distribution with lower variance (Fig. 2A). 

If the estimates of the distractor distributions are optimally updated 
between learning trials, more precise samples (i.e., trials with lower 
distractor variance) would receive higher weights. In such cases, we 
expect representations of the integrated feature distributions to fall 

1 For a more detailed discussion of the difference between the terms “sensi
tivity to” and “representation of” probabilistic information, see Tanrıkulu, 
Hansmann-Roth, Chetverikov, and Kristjánsson (2020). 
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between the means of the two distractor distributions but importantly be 
biased towards the one with lower variance. Conversely, if uncertainty is 
not taken into account, the integrated distribution should fall around the 
mid-point of the means of the two distractor distributions. Finally, if no 
temporal integration occurs, then search times on test trials should 

reflect the distractor distribution on the last learning trial. Predicted 
results from these three alternative outcomes are depicted in Fig. 2B. Of 
course, such alternatives are not fully mutually exclusive. For example, 
if the uncertainty in the representation increases with time due to 
additional noise during the maintenance, the last trial can have more 

Fig. 1. The feature distribution learning (FDL) 
methodology used by Chetverikov et al. (2016). A. An 
example of a simple odd-one-out visual search display 
in orientation space. Whether a line is the target or 
not can only be determined if all the other lines can be 
grouped into a category of distractors, to which the 
target is unlikely to belong. Therefore, odd-one-out 
search requires perceptual grouping and encoding of 
the distractor orientations. B. The orientation values 
of the target and distractors in display A are swapped 
in display B to induce role reversal effects C. Hypo
thetical search times obtained from display B when it 
follows the one in A (i.e. when role-reversals occur). 
Search times following role-reversals depend on the 
similarity between the current target and the previous 
distractors. Manipulating this similarity and observing 

its effects on search times can reveal observers’ representations of previous distractors (the red curve).   

Fig. 2. A. In Bayesian optimal integration of 
probability distributions, the weights 
assigned to the mean of the integrated dis
tributions are inversely proportional to their 
variance, as the equation at top right shows 
where μ and σ correspond to the mean and 
variance of the distributions, respectively. 
Top plot: Integration of two distributions 
with equal variances (red and blue curve) 
would yield a distribution (black curve) that 
is centered on the mid-point of the two dis
tributions. Bottom plot: If one of the distri
butions (red curve) has a lower variance than 
the other, then their integration should yield 
a distribution (black curve) biased towards 
the distribution with the lower variance. We 
manipulated the variance of the two orien
tation distributions presented during 
learning trials and examined how it in
fluences search times on test trials, which 
reflect how observers integrated the two 
orientation distributions. B. Three potential 
outcomes of this study. The x-axis is the 
orientation space where the means of the two 
distributions are marked by the dashed red 
and blue lines. The black dashed line in
dicates the mid-point of the two distribution 
means. µ2 and µ1 show the mean of the dis
tractor distribution used on the last learning 
trial and on the trial before the last one, 
respectively. The y-axis shows the three 
different conditions in terms of the relation 
between the variances of the two distribu
tion. The black data points correspond to the 
expected mean (µint) of the resultant distri
bution obtained by the integration of the two 
distributions. The plot on the left shows the 
expected results if the integration is optimal, 
where µint would be biased toward the dis
tribution with the lower variance. The center 
plot shows the expected results if the inte
gration is done without taking the variances 
of the two distributions into account, where 

µint would be on the mid-point of the two distribution means regardless of their variances. If no integration takes place, the expected result is shown by the plot on the 
right, given that the last orientation distribution presented to the observers was the second distribution (µ2). Without any temporal integration, the visual system 
should only rely on the most recently observed orientation distribution.   
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weight in the integration process even if the stimulus distribution on that 
trial was noisier than on the trial before. Nevertheless, the three alter
natives outlined here provide an overview of the potential outcomes of 
the study. 

A crucial factor that determines how the visual system integrates 
information from two unreliable sources is the degree of conflict be
tween them. For example, studies demonstrating optimal Bayesian 
integration of perceptual cues in human observers have carefully limited 
the discrepancy between the two conflicting cues (e.g., Ernst & Banks, 
2002; Hillis, Watt, Landy, & Banks, 2004), because if a cue conflict 
becomes large enough the visual system can completely discount one of 
the cues (Banks & Backus, 1998; Blake, Bülthoff, & Sheinberg, 1993). A 
similar pattern occurs for ensemble representations. Utochkin and 
Yurevich (2016) examined the effect of segmentability of distractor 
orientation distributions in odd-one-out visual search while keeping the 
heterogeneity of the distractors constant. They found that when the 
distractor orientation distribution was segmentable into separate groups 
(i.e., when the orientation distance between the distractors was large) 
search was inefficient, indicating that observers did not treat the dis
tractors as a single orientation ensemble, but instead encoded them as 
separate distractor groups. Search performance improved, however, 
when the orientation difference between the distractors was low so that 
the distractor distribution became unsegmentable, suggesting that ob
servers represented the distractors as a single orientation distribution. In 
other words, independent of heterogeneity, the orientation distance 
between groups of lines determines whether the visual system integrates 
them into a single feature ensemble, or treats them as separate feature 
ensembles. Given that distance between the distributions and their and 
standard deviations can have a significant influence on the integration, 
we ran three experiments in which we varied the overlap between the 
two distractor distributions across different experiments. This ensured 
that the results we obtained were not due to the distance between the 
two distractor distributions chosen for that particular experiment. 

2. General method 

2.1. Overview 

We modified the FDL methodology described in Chetverikov et al. 
(2019) by using two different distractor distributions during a single 
learning streak, where distractor orientations on each trial of the 
learning streak were sampled from two different probability distribu
tions in alternating order. All three experiments had essentially the same 
design and procedure, except that the SD and the orientation distance 
between the means of the two distractor distributions differed across 
experiments. In Experiment 1 and 3, the SD’s of the two distractor dis
tributions were 5◦ and 15◦, whereas in Experiment 2 they were 8◦ and 
15◦. The orientation differences between the two distractor distributions 
were 30◦, 20◦ and 12◦ in Experiments 1, 2 and 3, respectively. These 
differences across experiments allowed us to test our method with 
different degrees of overlap between the two distractor distributions. 

2.2. Participants 

All experiments were performed in accordance with the re
quirements of the Declaration of Helsinki and of the local ethics com
mittee. Sample size and number of trials for each experiment were 
chosen considering the results of previous FDL studies (Chetverikov 
et al., 2016; Chetverikov et al., 2017a; Chetverikov et al., 2017b; 
Chetverikov et al., 2017c; Tanrıkulu et al., 2020) as an informed mini
mum. Instead of using traditional null-hypothesis frequentist testing, we 
used Bayes Factor analysis to estimate the amount of evidence in favour 
of our hypotheses regarding the integration of feature distributions. 

2.3. Stimuli and design 

The display contained a search array of 36 white lines arranged in a 6 
by 6 invisible grid on a grey background (Fig. 3). The grid was centered 
on the screen and extended to 13◦×13◦. The length of each line was 1◦

and random jitter (±0.5◦) was added to the horizontal and vertical co
ordinates of each line. 

We used blocks of search trials where each block had a streak of 
learning trials (varied from two to eight trials) and a test trial. During a 
learning streak, the orientations of the distractor lines were sampled 
from two separate Gaussian distributions in alternating order (Fig. 4). 
The SDs of the two distractor orientation distributions were manipulated 
within an experiment, and each distribution was truncated 2 × SD away 
from its mean to prevent influences from accidental outliers. To keep the 
range of different distribution types constant, we set the orientation of 
two distractor lines to the minimal and maximal values of the range of 
the distributions. The mid-point of the mean of the two distractor dis
tributions was chosen randomly from 0◦ to 180◦ across learning streaks, 
but kept fixed during a single streak and their means were equidistant 
from this mid-point (Fig. 4A). The distance between the mean of the 
distributions and the mid-point differed in each experiment. Target 
orientation on learning trials was determined randomly with the re
striction that its distance in orientation space was at least 75◦ from the 
mid-point of the two distractor distributions (to keep the search task 
moderately easy for observers). 

A single test trial followed the learning streak, where the orientation 
difference between the target on the test trial and the mid-point of the 
two distractor distribution means from the preceding learning streak 
was manipulated. This CT-PD (Current Target – Previous Distractors) 
distance determines the similarity between the current target and pre
vious distractors. The CT-PD distance was manipulated throughout each 
experiment yielding a uniform distribution of CT-PD values across 
orientation space. For this, we divided orientation space into 12 bins 
with each bin having a range of 15◦. On each test trial, a CT-PD distance 
was randomly determined from the bins with the restriction that at the 
end of each experiment there were equal numbers of CT-PD distances 

Fig. 3. Two example search displays and the underlying distractor probability 
distributions for distractor sets (shown below). The colored frames around the 
search arrays are added to indicate the corresponding target and distractor 
features, and were not included in the experimental stimulus. On the left, the 
orientations of the distractor lines are sampled from a Gaussian distribution 
centered on 30◦ (blue curve) with SD = 5◦. The target orientation is 130◦. On 
the right, the orientations of the distractors are sampled from a Gaussian dis
tribution centered on 60◦ (red curve) with SD = 15◦. The target orientation 
is 160◦. 
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from each bin. The target orientation on each test trial was determined 
by the chosen CT-PD distance. Distractor orientations on a test trial were 
sampled from a Gaussian distribution (SD = 10◦, truncated similarly to 
learning trials, and the orientations of two distractors were set to the 
minimal and maximal values of its range) whose mean was randomly 
determined with the restriction that the target to distractor-mean dis
tance was at least 60◦. 

2.4. Procedure and materials 

Participants sat 57 cm away from a 24-inch LCD monitor with a 
resolution of 1920 × 1080 pixels, connected to a Windows 7 PC. All 
experiments were presented with MATLAB Psychtoolbox (Brainard, 
1997; Kleiner, Brainard, & Pelli, 2007). Participants searched for the 
oddly oriented line among the 36 oriented lines and indicated with key 
presses whether the oddly-oriented line (i.e., target) was in the upper or 
lower three rows of the search array. The position of the target within 
the search array was randomized. Participants were allowed to make 
eye-movements, and instructed to respond as quickly and as accurately 
as possible. If they made a mistake, the word “ERROR!” appeared for 1 s 
at center in red, otherwise, the next search trial immediately followed. A 
score was calculated for each response based on response time and ac
curacy to motivate participants (for correct responses: score = 10 +

(1 − RT)*10; for errors:score = − |10+(1 − RT)*10 | − 10; where RT is 
response time in sec; the score rewards fast correct responses). The score 
from each trial was presented in the top left corner of the screen in green 
for correct and red for incorrect responses. Total accumulated scores 
were shown to participants at each break and at the end of the sessions. 
All experiments were run in accordance with the Declaration of Helsinki 
and the requirements of the local ethics committee. All observers signed 
an informed consent form before participating. 

Trials with incorrect responses and with exceptionally high (>3 s) 

and low (<200 ms) search times were excluded from all analyses on 
search times. For the analyses done on test trial search times (i.e., role 
reversal effects), test trials following a learning streak with at least one 
incorrect response on the last two learning trials were also excluded.2 

3. Experiment 1 

3.1. Participants 

Ten participants (five females, age M = 32.7) who had normal or 
corrected-to-normal visual acuity took part in the study. Two partici
pants were the authors ODT and AK. All signed an informed consent 
form before participating and were paid for participation (except the 
two authors). 

3.2. Method 

The experiment started with blocks of trials with a learning streak 
followed by a test trial (see General Method for details). To test the ef
fects of learning streak length, the streaks were either short (2 trials) or 
long (6 or 8 trials). On learning trials, the SD of the distractor distribu
tion alternated either between 5◦ and 15◦ or stayed constant, which 
yielded four conditions: “15 – 15”, “15 – 5”, “5 – 15” and “5 – 5”, where 
the first number indicates the SD of the distractor distribution used on 
the first trial of the learning streak (distribution 1 in Fig. 4), and the 
second the SD of the distribution used on the last trial of the learning 
streak (distribution 2 in Fig. 4). One of the distributions was shifted 
clockwise and the other counter-clockwise from the mid-point. All these 
factors were randomized between blocks, and counterbalanced for each 
condition and participant. Each participant completed 8448 search tri
als, or 1536 blocks: 4 (SD manipulation: “15 – 15”, “15 – 5”, “5 – 15”, “5 
– 5”) × 2 (which distribution is clockwise of the mid-point: distribution 1 

Fig. 4. A. An example block from Experiment 1. On learning trials, distractor orientations were sampled from two different Gaussian distributions in alternating 
order. On a test trial role reversal effects are induced at different CT-PD (Current Target – Previous Distractors) distances. In this example, the mid-point of the means 
of the previous distractor distributions of the learning streak is 45◦, and the target orientation on the test trial is 50◦, which yields a CT-PD value of 5◦. Within 
different blocks, the target on the test trial is chosen at different places in orientation space to yield a uniform coverage of CT-PD values. B. An example curve 
obtained by plotting search times on test trials as a function of CT-PD distances. The mean of this curve corresponds to the most expected distractor orientation given 
the two distractor distributions on the learning trials. In three experiments, we manipulated the SD of the two distractor distributions on the learning trials to 
investigate their effect on the most expected orientation obtained from such CT-PD curves. 

2 For all three experiments, similar results were obtained when such trials 
were not excluded. However, excluding such trials is important to observe a 
clearer effect of role-reversals. 
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or distribution 2) × 12 (CT-PD bins) × 2 (learning streak length: short or 
long) × 8 (repetition). 

The experiment was completed in four approximately 45 min ses
sions. Four breaks split the session into five parts, where observers could 
rest as needed. Two naïve observers participated in a full session for 
practice before the first experimental session because of exceptionally 
high response times (>3 s) initially. Other participants completed 100 
practice trials at the start of the first session, and 50 practice trials for the 
following sessions. 

3.3. Results 

Trials with search times higher than 3 s and lower than 200 ms were 
excluded (around 0.1% of all trials). Search times were log-transformed 
for all analyses, and trials where participants made an error were 
excluded from search time analyses. 

3.3.1. Average search performance 
Table 1 shows the average search times and accuracy for distractor 

distributions with different SDs. A one-way repeated measures ANOVA 
yielded a significant effect of distribution SD on search times (F(2,18) =
82.19, p < 0.001, η2 = 0.2) and accuracy (F(2,18) = 27.29, p < 0.001, η2 

= 0.48). As expected, distractor distributions with larger SDs yielded 
longer search times and lower accuracy, presumably because of larger 
distractor orientation variability in the display. 

3.3.2. Repetition effects 
Search times as a function of trial number during the learning streaks 

are shown in Fig. 5 for each distractor SD condition. In Fig. 5A, condi
tions “15 – 5” and “5 – 15” were combined to compare repetition effects 
in learning streaks with alternating distractor SDs to learning streaks 
with a single SD. Search times from learning streaks with alternating 
distractor SDs are shown in more detail in Fig. 5B. A linear mixed effects 
regression with Helmert contrasts was fit to search times with trial 
number as a fixed effect and participants as a random effect. This 
allowed us to compare the search time of each trial number with the 
average of the following trials. Search times decreased significantly only 
after the first learning trial before reaching a plateau for the “15 – 15” 
condition (B = 0.06, t = 6.66, p < 0.001), but this plateau occurred after 
the third trial for the “5 – 5” condition (B = 0.01, t = 2.82, p < 0.01). For 
the learning streaks where SD alternated (“5 – 15” and “15 – 5”), search 
times decreased after the second trial before reaching a plateau (B =
0.01, t = 3.23, p < 0.01). Accuracy significantly increased on the first 
two trials of the “15 – 15” condition (B = 0.21, Z = 2.57, p = 0.01), 
whereas it increased only after the first trial for the learning streaks with 
alternating SDs (B = 0.36, Z = 5.05, p < 0.001). There were no repetition 
benefits for accuracy in the “5 – 5” condition, most likely reflecting 
ceiling effects at the first trials of the learning streak. For learning streaks 
where the SD of the distractor distribution alternated, the SD of the 
distractor distribution determined search times and accuracy (Fig. 5B), 
as the alternating search times and accuracy values show. Repetition 
effects were only observed after the first trial regardless of the first 
distractor distribution SD in a streak, as the difference in search times 
between the first and third trials of the conditions “15 – 5” and “5 – 15” 
shows (Fig. 5B, upper row). 

3.3.3. Integration of distributions 
Besides excluding error trials and trials with exceptionally high 

(>3s) and low (<200 ms) search times, test trials following a learning 
streak with at least one incorrect response on the last two trials were also 
excluded (11% of the remaining test trials). 

We flipped the CT-PD values around the mid-point (by multiplying 
them with − 1) only for test trials which follow a learning streak that 
ends with a distractor distribution whose mean was counter-clockwise of 
the mid-point. This enabled us to analyze the search times on test trials 
when all learning streaks in each condition end with a distractor dis
tribution whose mean is clock-wise of the mid-point (distribution 2 in 
Fig. 6 whose mean is indicated with the red dotted line). This was done 
to avoid having two types of learning streaks where the mean of the 
distractor distribution on the last trial falls on opposite sides of the mid- 
point. If observers do not integrate the distributions but instead rely on 
the distractor distribution on the last learning trial, then having these 
two types of learning streaks could lead to average circular means falling 
around the mid-point, not because the distributions got integrated, but 
simply because the data from both sides of the mid-point was 
aggregated. 

Learning streak length did not significantly affect search times from 
test trials (F(1,9) = 0.74, p = 0.4, η2 < 0.001) or the circular means of 
CT-PD curves (F(1,9) = 1.14, p = 0.3, η2 = 0.09), and we therefore 
combined the data from the two learning streak lengths in the following 
analyses. Fig. 6A shows representative search times on test trials as a 
function of similarity between the target and distractors on the pre
ceding learning trials (i.e., CT-PD curves) for one participant. As ex
pected, search times on test trials were highest when the target 
orientation came from the distractor distributions used on the preceding 
learning trials (i.e., when CT-PD is close to the mid-point, 0◦). These CT- 
PD curves (Fig. 6A) reflect how participants integrated information from 
the distractor distributions from the learning streak. In order to assess 
whether the SD of the distractor distribution biased this integration, we 
calculated the circular mean of the CT-PD curves for each observer and 
SD condition (Fig. 6B). The calculated circular means mostly fell around 
the mean of the distractor distribution that was used on the last trial of 
learning streaks (µ = 15◦, red dotted line in Fig. 6B). 

We conducted Bayesian analysis using the “BayesFactor” package in 
R (Morey & Rouder, 2018) with its default parameter values. We first 
conducted a two-way Bayesian hypothesis testing (for the details of the 
computation, see Rouder, Morey, Speckman, & Province, 2012) in 
which the SD (5◦ or 15◦) of the distractor distribution on the last and of 
the one before the last3 learning trial were the two main factors, whereas 
participants were added as a random factor. The effects of the two main 
factors were assessed by comparing a model with both main factors to a 
model with only one of the factors. The interaction between the two 
factors was assessed by comparing the full model to a model with only 
the two main factors. For all the three factors, the evidence assessed by 
the Bayes Factor (BF) was in favour of the null model (SD of the last trial, 
BFexcl = 3; SD of the trial before the last, BFexcl = 2; their interaction, 
BFexcl = 2.4). We also tested whether the circular CT-PD means for these 
two factors were different than the mean of the distractor distribution 
used on the last learning trial (µ = 15◦, red dotted line in Fig. 6C). A one- 
sample test compared an alternative model (µ ∕= 15◦) to a null model (µ 
= 15◦). There was positive evidence in favour of the alternative model 
when the SD of the last trial was 15◦ (BF10 = 3.4), and when the SD of the 
trial one before the last was 15◦ (BF10 = 5.2). However, the evidence in 

Table 1 
Search times and accuracy in Experiment 1 as a function of distractor distribu
tion SD. The trials in which the distractor SD was 10◦ correspond to test trials, 
whereas the other ones (SD of 5◦ and 15◦) correspond to learning trials.  

Distractor Distribution SD Accuracy 
M SD 

Search times of correct responses (ms) 
M SD 

5◦ 0.97  0.01 558 67 
10◦ 0.95  0.02 629 90 
15◦ 0.91  0.04 667 112  

3 Note that because the learning streaks had even lengths, the first learning 
trial has the same underlying distractor distribution as the trial before the last 
one. Therefore, examining the effect of the SD of the trial before the last 
learning trial is also equivalent to examining the effect of the SD of the first 
learning trial. Similarly, examining the effect of with which SD (5◦ or 15◦) a 
learning streak ends (i.e. SD of the last trial) is equivalent to examining the 
effect of the SD of the second learning trial in a streak. 
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favour of the alternative model was low when the SD of the last trial was 
5◦ (BF10 = 1.7), and when the SD of the trial one before the last was 5◦

(BF10 = 1.2). 
We also calculated the circular SD of CT-PD curves obtained from 

each condition and participant (Fig. 6D). We examined the effect of the 
SD of the last and of the one before the last learning trial on the calcu
lated circular SD’s of the CT-PD curves. A similar two-way Bayesian 
analysis revealed positive evidence (BFincl = 10.7) in favour of the main 
effect of the SD of the last trial. As Fig. 6D shows, the calculated circular 
SDs were notably higher when the last trial of the learning streak 
included a distractor distribution with an SD of 15◦ (i.e., conditions “15 
– 15” and “5 – 15”), than an SD of 5◦ (i.e., conditions “15 – 5” and “5 – 
5”). However, the main effect of the SD of the trial before the last one 
and the interaction of the two factors yielded negligible evidence in 
favour of the null model (BFexcl = 2.5 and 1.7, respectively). 

3.4. Discussion 

The largest role-reversal effects (i.e., highest search times) on test 
trials were observed when the target orientation was similar to the mean 
orientation of the distractor distribution on the last trial of the preceding 
learning streak. This indicates that observers were able to spatially 
integrate the distractor orientations on the last learning trial and encode 
their orientation distribution. At the same time, this also reveals a 
dominating influence of the last learning trial before the test trial. The 
evidence from the one-sample tests for the slight bias towards the dis
tractor used in the trial before the last suggests a recency effect as 
opposed to a complete lack of integration in which observers would be 
only taking the last distractor distribution into account. However, the SD 
of the distractor distribution on the last trial had no effect on this bias. 

Notably, the circular SDs of the CT-PD curves were significantly 
influenced by the SD of the distractor distribution on the last trial of a 
learning streak. This is in line with the recency effect observed on the 

mean of the CT-PD curves. When the SD of distractors on the last 
learning trials was 15◦, the CT-PD curves obtained from the participants 
had higher SDs than those when the SD of the distractors on the last 
learning trials was 5◦. This result also matches the findings of Chetver
ikov et al. (2016), who observed that search time slopes as a function of 
CT-PD distance on test trials become shallower as the SD of the distractor 
distribution on the learning trials increases. This is expected because 
larger SDs correspond to wider probability distributions, which, all 
things being equal, results in flatter CT-PD curves. However, in all 
conditions, the calculated SD of the CT-PD curves were much higher 
than the actual SD’s of the distractor distributions. 

4. Experiment 2 

Having observed the recency effect in the first experiment, we 
decided to decrease the orientation distance and also increase the 
overlap between the two distractor distributions in Experiment 2 to test 
whether it would facilitate integration. We decreased the orientation 
distance between the two distributions to 20◦ (as opposed to 30◦ in 
Experiment 1). Another potential factor that might influence integration 
could be the SD used for the low variance distribution. The distractor 
distribution with SD = 5◦ created a seemingly homogenous search 
display. This low level of uncertainty in one set of trials can potentially 
discourage the visual system from integrating it with information from 
other trials. Therefore, in Experiment 2, we increased the SD of the low 
variance distribution to 8◦. This change not only introduced more un
certainty, but also increased the overlap between the two distributions, 
which could potentially facilitate integration. 

4.1. Participants 

Ten participants (5 females, age M = 31.5) with normal or corrected- 
to-normal visual acuity participated. Nine had participated in 

Fig. 5. A. Search times and accuracy in Experiment 1 as a function of trial numbers in the learning streak for different SD pairings. The conditions where the SD of the 
distractors alternate throughout the streak are combined for this plot. The error bars denote 95% confidence intervals. B. Search times and accuracy for the conditions 
where the SD of the distractor distributions alternates during the learning streak. The first column on the left shows the search times (top) and accuracy (bottom) for 
the learning streaks starting with a trial that includes a distractor distribution with SD = 15◦. The column on the right shows the search times and accuracy for 
learning streaks starting with a trial that includes a distractor distribution with SD = 5◦. The error bars denote 95% confidence intervals. 
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Experiment 1 and two were the authors ODT and AK. All participants 
signed a consent form before participating and were paid for their 
participation (except the two authors). 

4.2. Method 

There were only two differences in the design from Experiment 1. 
Firstly, the distractor distribution with the lower variance had an SD of 
8◦, yielding four conditions “15 – 15”, “15 – 8”, “8 – 15” and “8 – 8”. 
Secondly, the orientation difference between the means of the two dis
tractor distributions was decreased to 20◦. One participant who was not 
familiar with the search task was given a full practice session before the 
experimental sessions. 

4.3. Results 

The same trial exclusion conditions as in Experiment 1 were applied. 

4.3.1. Average search performance 
There was a significant effect of distractor distribution SD on both 

search times (F(2,18) = 124.63, p < 0.001, η2 = 0.14) and on accuracy (F 
(2,18) = 19.09, p < 0.001, η2 = 0.25). As in Experiment 1, distractor 
distributions with larger SDs yielded longer search times and lower ac
curacy (Table 2). 

4.3.2. Repetition effects 
Fig. 7 shows average search times within learning streaks as a 

function of trial number. The conditions where the SD of the distractor 
distribution alternates within a learning streak (i.e., “15 – 8” and “8 – 
15”) were combined in Fig. 7A (see Fig. 7B for more details for these 
conditions). Linear mixed effects regressions with Helmert contrasts, 
comparing each trial with the average of the following trials, revealed 
that for all three conditions search times significantly decreased after the 
first learning trial (For 15 – 15: B = 0.08, t = 13.91, p < 0.001; for 8 – 8: 
B = 0.1, t = 15.25, p < 0.001; for alternating SD streaks: B = 0.08, t =
16.00, p < 0.001). However, no significant decrease was observed after 
the first trial. Similar analyses on accuracy revealed significant increases 
only after the first trial for conditions “15 – 15” (B = 0.17, Z = 4.50, p <
0.001), and for the condition where the SD of the distractor distribution 
alternated within a streak (B = 0.24, Z = 2.70, p < 0.01). There was no 

Fig. 6. A. Example of a CT-PD curve (i.e., search times on test trials as a function of CT-PD distances) obtained from one participant in Experiment 1. The upper plot 
includes the CT-PD curves from the conditions where the SD of the two distractor distributions were equal, where the one on the bottom shows the conditions where 
SD of the distractor distributions alternated. The red (µ2) and the blue (µ1) dashed line indicate the means of the distractor distribution on the last and on the one 
before the last learning trial, respectively. The grey region around the curve indicates the 95% confidence interval of the LOESS (locally estimated scatterplot 
smoothing) regression fitted to the data. B. Circular means of the CT-PD curves for each condition of Experiment 1. The black filled circles indicate the average 
circular means with error bars indicating 95% confidence intervals, whereas the smaller open circles indicate the circular means obtained from individuals. The red 
(µ2) and the blue (µ1) dashed line indicate the mean of the distractor distribution on the last and on the one before the last learning trial, respectively. C. Circular 
means of the CT-PD curves depending on the SD of the distractor distribution on the last or the one before the last learning trial. Error bars indicate 95% confidence 
intervals. The red dashed line indicates the mean of the distractor distribution in the last learning trial (µ2), whereas the black one indicates the mid-point of the two 
distractor distributions. D. Circular SDs of the CT-PD curves obtained for each condition of Experiment 1. The black filled circles indicate the average circular SDs 
with error bars indicating 95% confidence intervals, whereas the smaller open circles indicate the circular SDs calculated from individuals. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Search times and accuracy in Experiment 2 as a function of distractor distribu
tion SD. The trials in which the distractor SD was 10◦ correspond to test trials, 
whereas the other ones (SD of 8◦ or 15◦) to learning trials.  

Distractor Distribution SD Accuracy 
M SD 

Search time of correct responses (ms) 
M SD 

8◦ 0.97  0.01 590 66 
10◦ 0.96  0.03 656 80 
15◦ 0.94  0.03 659 90  
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repetition effect for the “8 – 8” condition (B = 0.17, Z = 1.25, p = 0.21), 
most likely due to a ceiling effect. Search times and accuracy for the 
conditions “8 – 15” and “15 – 8” can be seen in more detail in Fig. 7B. 

4.3.3. Integration of distributions 
In addition to excluding trials with incorrect responses and excep

tionally high (>3s) and low (<200 ms) search times, 7% of the 
remaining test trials were also excluded (test trials following a learning 
streak with at least one incorrect response in the last two trials). 

As for Experiment 1, we flipped the CT-PD values around the mid- 
point on test trials following a learning streak ending with a distractor 
distribution centered counter-clockwise of the mid-point. The data in 
Fig. 8 are therefore plotted so that all learning streaks end with a dis
tractor distribution centered clock-wise (distribution 2 in Fig. 8 whose 
mean is indicated with the red dotted line). Again, there was no effect of 
learning streak length on search times on test trials (F(1,9) = 0.14, p =
0.7, η2 < 0.001) nor on the mean of CT-PD curves (F(1,9) = 0.01, p = 0.9, 
η2 < 0.001), so the data from different learning streaks lengths were 
combined. 

Fig. 8A shows a representative CT-PD curve (i.e., search times on test 
trials as a function of similarity between target and distractors on pre
ceding learning trials) for one participant. Fig. 8B shows the circular 
mean of the CT-PD curves obtained from the participants for each con
dition. As in Experiment 1, the means of the CT-PD curves were mostly 
centered around the mean of the distractor distribution from the last 
trial of a learning streak. We conducted the same Bayesian analysis as we 
did in Experiment 1 where we examined the effect of the SD of the 
distractor distribution on the last learning trials, as well as SD of the one 
before the last trial. For the effect of the SD of the last trial, the BFexcl in 
favor of the null model was 3, whereas for the effect of the SD of the one 
before the last the evidence was in favor of the alternative hypothesis 
(BFincl = 2.6). There was no evidence in favor of either hypotheses for the 
interaction of the two factors (BFincl = 1). We also tested whether the 
circular CT-PD means for the two factors were different than the mean of 

the distractor distribution used on the last learning trial (µ = 10◦, red 
dotted line in Fig. 8B). We compared a point null model (µ = 10◦) to the 
alternative model of µ ∕= 10◦. There was positive evidence in favour of 
the null model when the SD of the last trial was 15◦ (BF01 = 3.7), and 
when it was 8◦ (BF01 = 4.1). The evidence in favor of the null was low 
when the SD of the trial before the last one was 15◦ (BF01 = 1.7), or when 
it was 8◦ (BF01 = 1.2). 

Fig. 8D shows the calculated circular SDs of the CT-PD curves ob
tained from each condition. By using the same Bayesian analysis, we 
examined the effect of the SD of the distractor distributions (last vs. one 
before last) on the calculated circular SD of the CT-PD curves. There was 
positive evidence (BFincl = 57) for the effect of the SD of the last learning 
trial. However, the evidence was in favor of the null model (BFexcl = 3.3) 
for the effect of the SD of the trial before the last learning trial. For the 
interaction of the two factors, there was almost no evidence for either 
hypothesis (BFincl = 1.1 in favor of the interaction). Overall, the SD of the 
CT-PD curves was notably higher when the SD of the distractor distri
bution on the last learning trial was 15◦ (conditions 8 – 15 and 15 – 15) 
than when it was 8◦ (conditions 8 – 15 and 15 – 15). 

4.4. Discussion 

In Experiment 2, we reduced both the difference between the SD’s of 
the two distractor distributions on the learning trials (8◦ & 15◦ vs. 5◦ & 
15◦), as well as the distance between the means of the two distributions, 
compared to Experiment 1, causing larger overlap between the two 
distractor distributions. The results were nevertheless similar to Exper
iment 1. The role reversal effects depended on the last trial of the 
learning streak, since the mean of the CT-PD curves did not differ from 
the mean of the distractor distribution on that trial. The SDs calculated 
from the CT-PD curves, which were higher when the distractor distri
bution on the last learning trial had a higher SD (=15◦), also show this. 

Fig. 7. A. Search times and accuracy as a function of learning trial number in Experiment 2 for different SD pairings. The conditions where the SD of the distractors 
alternate through the streak are combined. B. Search times and accuracy for the conditions where the SD of the distractor distribution alternates during the learning 
streak. The first column on the left shows the search times (top) and accuracy (bottom) for the condition “15–8”, whereas the column on the right side denote the 
“8–15” condition. Error bars denote 95% confidence intervals. 
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5. Experiment 3 

In Experiment 3, we further decreased the orientation distance be
tween the two distractor distributions in order to examine whether it 
would influence integration. The orientation distance between the dis
tributions was set to 12◦ in Experiment 3. Since increasing the SD of the 
low variance distribution in Experiment 2 did not facilitate integration, 
in this experiment we went back to using SD of 5◦ for the low variance 
distractor distribution. In addition to this, we did not manipulate the 
learning streak length in Experiment 3 since no influence of streak 
length was observed in the first two experiments. 

5.1. Participants 

Ten participants (7 females, age M = 29.8) with normal or corrected- 
to-normal visual acuity took part in the study. Seven had participated in 
Experiment 1 and 2. One participant was the author ODT. All were 
volunteers and signed a consent form before participating. 

5.2. Method 

The design and the procedure were similar to Experiment 1 and 2, 
with the following exceptions: The orientation distance between the two 
distractor distributions was set to 12◦. In addition to this, the learning 
streak length was not manipulated in Experiment 3, but we included two 
different learning streak lengths (four or six trials) to decrease potential 
anticipation of upcoming test trials (Shurygina et al., 2019). SD’s of the 
distractor distributions on the learning trials were either 5◦ or 15◦. Each 

participant completed 6912 search trials, a total of 1152 blocks: 4 (SD 
manipulation: “15 – 15”, “15 – 5”, “5 – 15”, “5 – 5”) × 2 (learning streak 
starts with: distribution 1 or distribution 2) × 12 (CT-PD bins) × 2 
(learning streak length: 4 or 6) × 6 (repetition). 

The experiment was completed in two ~55 min sessions with 5 
breaks equally splitting the sessions. All participants completed 100 
practice trials at the beginning of the first session, and 50 at the 
beginning of the second. 

5.3. Results 

The same trial exclusion conditions as in Experiment 1 were applied. 

5.3.1. Average search performance 
As before, there were significant effects of distractor distribution 

SD’s on search times (F(2,18) = 148.53, p < 0.001, η2 = 0.22), and 
accuracy (F(2,18) = 29.2, p < 0.001, η2 = 0.39). Distractor distributions 

Fig. 8. A. Example of a CT-PD curve (i.e. search times on test trials as a function of CT-PD distances) obtained from one participant in Experiment 2. The upper plot 
includes the CT-PD curves from the conditions where the SD of the two distractor distributions were equal, while the one at the bottom shows the conditions where 
SD of the distractor distributions alternated. The red (µ2) and the blue (µ1) dashed line indicate the mean of the distractor distribution in the last and in the one before 
the last learning trial, respectively. The grey fill around the curve indicates the 95% confidence interval of the LOESS (locally estimated scatterplot smoothing) 
regression fitted to the data. B. Circular means of the CT-PD curves for each condition. The black filled circles indicate the average circular means, whereas the 
smaller open circles indicate the circular means obtained from individuals. The red (µ2) and the blue (µ1) dashed line indicate the means of the distractor distribution 
on the last trial and on the one before the last learning trial, respectively. C. Circular means of the CT-PD curves depending on the SD of the distractor distribution on 
the last or the one before the last learning trial. Error bars indicate 95% confidence intervals. The red dashed line indicates the mean of the distractor distribution in 
the last learning trial (µ2), whereas the black one indicates the mid-point of the two distractor distributions. D. Circular SDs of the CT-PD curves obtained for each 
condition of Experiment 2. The black filled circles indicate the average circular SDs, whereas the smaller open circles indicate the circular SDs calculated from 
individuals. Error bars denote 95% confidence intervals. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Table 3 
Search times and accuracy in Experiment 3 as a function of distractor distribu
tion SD. The trials in which the distractor SD was 10◦ correspond to test trials, 
whereas the other ones (SD of 5◦ or 15◦) to learning trials.  

Distractor Distribution SD Accuracy 
M SD 

Search time of correct responses (ms) 
M SD 

5◦ 0.97  0.01 531 58 
10◦ 0.96  0.02 618 80 
15◦ 0.94  0.03 612 84  
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with larger SDs yielded lower accuracy (Table 3). Search times for dis
tractor distributions with SD = 5◦ were significantly lower than on other 
trial types. Search times were highest for trials with distractor distri
bution SD = 10◦, reflecting role-reversal effects since such trials were 
only used on test trials. 

5.3.2. Repetition effects 
The conditions with alternating distractor distribution SDs during a 

learning streak (5 – 15 and 15 – 5) were combined in Fig. 9A, but Fig. 9B 
shows search times from these two conditions in more detail. A linear 
mixed effects regression with Helmert contrasts showed that search 
times significantly decreased only after the first trial of the learning 
streaks for conditions “5 – 5” (B = 0.09, t = 10.95, p < 0.001) and “15 – 
15” (B = 0.1, t = 10.57, p < 0.001). For the combination of the condi
tions “5 – 15” and “15 – 5” (the blue line in the upper plot of Fig. 9A), the 
significant decrease in search times also occurred after the second 
learning trial (B = 0.01, t = 3.49, p < 0.001), before reaching a plateau. 
The same analysis on accuracy yielded a significant increase after the 
first trial for the combination of the “5 – 15” and “15 – 5” conditions (B 
= 0.19, Z = 2.04, p = 0.04). There was also a significant increase after 
the second trial for the “15 – 15” condition (B = 0.29, Z = 2.61, p =
0.01). Similar to previous experiments, no repetition effect was observed 
for accuracy in the “5 – 5” condition. 

5.3.3. Integration of distributions 
Besides incorrect test trials and trials with exceptionally high and 

low search times, 8% of the remaining test trials were excluded due to at 
least one incorrect response in the last two trials of their preceding 
learning streak. As in previous experiments, the CT-PD values were 
flipped so that all learning streaks end with a trial where the distractor 
distribution is centered clockwise of the mid-point. 

Fig. 10A shows a representative CT-PD curve for one participant, 
while Fig. 10B shows the circular mean of CT-PD curves for each 
different condition of the experiment. The same two-way Bayesian 
analysis as in previous experiments were performed to examine the 

effect of the SD of distractors of the last trial and of the one before the 
last trial. The evidence was in favor of the null model both for the effect 
of the SD on last trial (BFexcl = 3.2) and for the effect of the SD on the trial 
before the last (BFexcl = 2.7). The BFincl in favor of the interaction of the 
two factors was 3.4. When the SD of both the last trial and the one before 
the last were equal (“15 – 15” and “5 – 5”), the circular means of the CT- 
PD curves fell around the mean of the distractor distribution of the last 
trial. A slight bias towards the mid-point can be seen when they were not 
equal (“5 – 15” and “15 – 5”). When we tested whether the circular 
means of CT-PD curves differ (µ ∕= 6◦) from the mean of the distractor 
distribution in the last trial of the learning streak (the red dotted line in 
Fig. 10C), we observed positive evidence in favour of the null model (µ 
= 6◦) when the SD of the last trial was 15◦ (BF01 = 3.5), and when the SD 
of the trial before the last one was 15◦ (BF01 = 3.8). The evidence in 
favor of the null model was low when the SD of the last trial was 5◦ (BF01 
= 1.8), and when the SD of the trial before the last one was 5◦ (BF01 =

2.2). 
Fig. 10D shows the circular SDs of the CT-PD curves for each con

dition. A two-way Bayesian analysis revealed that there was strong ev
idence (BFincl = 319) for the effect of the SD of the last trial. This effect 
was due to the higher SDs of the CT-PD curves from learning streaks 
ending with a distractor SD = 15◦ (i.e. 5 – 15 and 15 – 15). The evidence 
was in favour of the null model for the effect of the SD of the trial before 
the last (BFexcl = 2.7), as well as for the interaction of the two factors 
(BFexcl = 2.1). 

5.4. Discussion 

In Experiment 3, we tried to facilitate integration of the two dis
tractor distributions by reducing the distance between the means of the 
two distractor distributions. The results were, however, in essence 
similar to the previous two experiments. The distractor distribution used 
in the last learning trial determined the structure of the CT-PD curves, 
with little signs of integration of information from the previous trials. 
The only influence of the SD of the distractor distribution on role- 

Fig. 9. A. Search times and accuracy as a function of trial number within learning streaks in Experiment 3. B. Search times and accuracy for the conditions where the 
SD of the distractor distributions alternates during the learning streak. The first column on the left shows the search times (top) and accuracy (bottom) for the 
condition “15–5”, and the column on the right is for the condition “5–15”. Error bars denote 95% confidence intervals. 
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reversals was observed on the calculated SD of the CT-PD curves. When 
the SD on the last learning trial was 15◦, the calculated SDs of CT-PD 
curves were much higher than the SDs of the CT-PD curves from 
learning streaks ending with distractor SD = 5◦. 

6. Analysis of aggregate data from all experiments 

The main difference across the three experiments was the orientation 
distance (or the overlap) between the two distractor distributions used 
in the learning streaks. This was done in order to observe whether the 
distance between the distributions would influence their integration. 
Apart from this, all three experiments had a similar design in which 
there are two distractor distributions, one with a lower SD (5◦ or 8◦) and 
one with a higher SD (15◦). Given this similarity in their design, we 
combined the data from all three experiments to examine whether the 
SD of the last trial or the SD of the one before the last trial had an effect 
on the calculated circular means of the CT-PD curves. 

Fig. 11 shows the combined data from all three experiments. In these 
plots, the reference point (µ = 0) is taken as the mean of the distractor 
distribution on the last learning trial (µ2, the red dotted line in Fig. 11A 
& B). Negative values indicate a bias towards the distractor distribution 
used on the trial before the last one. The labels “low” and “high” on the 
plots refer to distractor distributions with low (5◦ or 8◦) or high SD (15◦), 
respectively. We again ran a two-way Bayesian analysis to examine the 
effects of the two main factors; SD of the last trial and SD of the trial 
before the last. Participants and the experiment number were added to 

the model as random variables. For the effect of the SD of the last trial, 
there was positive evidence for the null model (BFexcl = 4.8). This in
dicates that the SD of the last trial did not have an effect on the circular 
means of the CT-PD curves. The evidence in favour of the null model was 
lower (BFexcl = 2.3) for the effect of the trial before the last one. How
ever, there was positive evidence (BFincl = 4.1) for the interaction of the 
two factors. This interaction is mostly due to the bias towards the dis
tractor in the trial before the last, which was observed when the trial 
before the last one had a low SD and the SD of the last trial was high 
(Fig. 11B). 

In order to further examine this interaction, we ran one-sample 
Bayesian hypothesis testing in which we compared a point null model 
(µ = 0◦, the red dashed line on Fig. 11B) to an alternative model of µ ∕=
0◦. The evidence in favour of the alternative model was negligible when 
the SD of the last trial was low (BF10 = 1.3) or high (BF10 = 1). However, 
there was positive evidence (BF10 = 5) in favour of the alternative model 
when the SD of the trial before the last one was low. In contrast, when 
the SD of the trial before the last one was high, there was positive evi
dence in favour of the null model (BF01 = 3). These results indicate that 
the bias towards the trial before the last one can appear if the SD on that 
trial was low and the SD on the last trial was high. In other words, this 
slight bias was observed when uncertainty in the last trial was high (i.e. 
low reliability) and uncertainty was low (i.e. high reliability) in the trial 
before the last one. 

Fig. 11C shows the circular SDs calculated from the CT-PD curves for 
each condition. The same two-way analysis was run in order to observe 

Fig. 10. A. An example of CT-PD curve (i.e. search times on test trials as a function of CT-PD distances) obtained from one participant in Experiment 3. The upper 
plot includes the CT-PD curves from the conditions where the SD of the two distractor distributions were equal, while the bottom one shows the conditions where SD 
of the distractor distributions alternated. The red (µ2) and the blue (µ1) dashed line indicate the mean of the distractor distribution on the last trial and on the one 
before the last learning trial, respectively. The grey fill around the curve indicates the 95% confidence interval of the LOESS (locally estimated scatterplot smoothing) 
regression fitted to the data. B. Circular means of the CT-PD curves for each condition of Experiment 3. The red (µ2) and the blue (µ1) dashed line indicate the mean of 
the distractor distribution on the last trial and the one before the last learning trial, respectively. The black filled circles indicate the aggregate data with error bars 
indicating 95% confidence intervals, whereas the smaller open circles correspond to individual data. C. Circular means of the CT-PD curves depending on the SD of 
the distractor distribution on the last or the one before the last learning trial. Error bars indicate 95% confidence intervals. The red dashed line indicates the mean of 
the distractor distribution on the last learning trial (µ2), whereas the black one indicates the mid-point of the two distractor distributions. D. Circular SDs of the CT-PD 
curves obtained for each condition of Experiment 3. The black filled circles indicate the average circular SDs, whereas the smaller open circles indicate the circular 
SDs calculated from individuals. Error bars denote 95% confidence intervals. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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how the calculated circular SD from CT-PD curves was influenced by the 
SD of the last trial and of the trial before the last. There was strong ev
idence for the effect of the SD of the last trial (BFincl = 3 × 106). When the 
SD of the last trial was high (15◦), the calculated SD of the CT-PD curve 
was significantly higher compared to when the SD of the last trial was 
low. There was positive evidence in favour of the null model for the 
effect of the SD of the trial before the last one (BFexcl = 5.2), as well as for 
the interaction of the two factors (BFexcl = 3.7). These results demon
strate that the SD of CT-PD curve was only influenced by the distractor 
SD of the last trial: higher SD on the last trial yielded higher SD in CT-PD 
curves. Overall, the results indicate that observers were strongly biased 
towards the statistical properties of the most recent trial within the 
learning streak. 

7. General discussion 

Chetverikov and colleagues have shown how the visual system can 
encode feature distributions in surprising detail (Chetverikov et al., 
2016), and how this learning develops over time (Chetverikov et al., 
2017b). We wondered to what extent and in what ways these encoded 

feature distributions can be used by the visual system, particularly in 
integrating probabilistic visual input over time. In three experiments we 
addressed the question of whether the visual system optimally integrates 
two different distributions that alternated on adjacent visual search 
trials. We expected that the visual system would learn the feature dis
tributions in light of our previous findings but the main question was 
how the two distributions would be integrated. Our question reflected 
whether the visual system would be capable of optimal integration in 
accordance with classic Bayesian integration principles (e.g., Knill, 
2007; Knill & Richards, 1996; Körding & Wolpert, 2006) suggesting that 
observers will weigh more reliable information more strongly, in our 
case the distribution with the lower variance. We therefore expected the 
visual system to integrate the information by weighing the distribution 
with lower SD (and therefore more homogeneity) more highly in the 
integration process (this general logic is schematized in Fig. 2.) 

However, we found little evidence of integration of visual feature 
distributions across learning trials. The observers’ representations 
measured with the FDL method mostly reflected the statistics from the 
immediately preceding trial. The pattern of results we obtained was 
similar to the prediction depicted on the rightmost plot in Fig. 2B. 

Fig. 11. A. Circular means of the CT-PD curves obtained from combining the data from all three experiments. The labels “low” and “high” refer to the SD of distractor 
distributions. Negative values indicate a bias towards the distractor on the trial before the last one. The reference point µ2 (the red dashed line) indicates the mean of 
the distractor distribution on the last learning trial. Error bars indicate 95% confidence intervals. B. Same data plotted depending on the SD of the distractor dis
tribution on the last or the one before the last learning trial C. Circular SDs of the CT-PD curves obtained by combining the data from all three experiments. The labels 
“low” and “high” refer to the SD of distractor distributions. Error bars denote 95% confidence intervals. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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However, our overall results indicate a recency effect as opposed to a 
complete lack of integration. In certain conditions of each experiment, 
as well as in the combined data from all experiments, a bias towards the 
distractor distribution used on the trial before the last one can be 
observed. For example, the interaction observed between the SD of the 
last trial and of the trial before the last (Fig. 11B) was in line with the 
Bayesian principles of integration. The trial before the last one exerted 
an attractive bias only if it had lower uncertainty (i.e. was more reli
able), and if the last trial had higher uncertainty (i.e. less reliable). 
However, there was positive evidence for the lack of an effect of the 
distractor SD on the last trial. This indicates that the influence of the SD 
of the last trial was mostly overridden by the strong recency effect. Even 
though the evidence to assess the main effect of the SD of the trial before 
the last one was weak, the results from the one sample tests on the 
combined data yielded positive evidence for a bias towards the mid- 
point when the trial before the last one had low SD, as well as positive 
evidence for no effect if it had high SD. This differential influence of the 
SD of the trial before the last one indicates that the visual system does 
not completely dismiss the information presented before the last 
learning trial (as depicted in the rightmost plot of Fig. 2B), and does take 
into account the uncertainty in the distribution parameters, but also 
suggests a dominant recency effect that tends to override the influence of 
the previous trials. 

Even though the SD of the distractor distribution on the last trial had 
almost no effect on the circular means of CT-PD curves, it had a strong 
effect on their calculated circular SDs. When the distractor SD was high 
on the last trial, the SDs of the CT-PD curves were significantly higher 
than when the last distractor SD was low (Fig. 11C). This is in line with 
the recency effect we have observed in the circular means of the CT-PD 
curves, as well as with previous studies on FDL (e.g., Chetverikov et al., 
2016, Exp. 1) where larger distractor SDs resulted in wider CT-PD 
curves. In addition to this, the calculated circular SDs in all conditions 
were notably higher (>30◦) than the actual SDs (<15◦) of the distractor 
distributions. Search times in FDL studies as a function of CT-PD dis
tances are strongly proportional to the actual probability distribution 
function of the distractors. Given this, the high circular SDs obtained 
from the CT-PD curves suggest that observers’ representation of the 
distractor distribution incorporates higher variance or uncertainty 
compared to the actual variance of the underlying distractor distribu
tion. This could also speculatively be one of the reasons for why the SD 
of the distractor distributions had a minimal effect on the integration of 
the distractor distributions. The SD contrast between the two distractor 
distributions could be much lower than the SD contrast between the 
representations of these two distractor distributions. 

The visual system is less sensitive to ensemble information of visual 
features when the variance among the relevant feature increases 
(Fouriezos, Rubenfeld, & Capstick, 2008; Haberman, Lee, & Whitney, 
2015; Im & Halberda, 2013; Solomon, Morgan, & Chubb, 2011). Even 
though the variance of the distractor distribution within a single search 
display in our experiments could be low (e.g., 5◦), the temporal variation 
between different trials of a learning streak was high (the mean of the 
distractor distribution on each learning trial was different than the 
preceding one because the distributions alternated). Moreover, in 
certain conditions the SDs of distractor distributions alternated as well, 
between 5◦ and 15◦. We speculate that all this temporal uncertainty on 
the learning trials made the visual system rely only on the statistical 
information extracted from the last learning trial. This may reflect that 
the system weighs recent information very highly because the input is 
unreliable due to the alternation between different distractor distribu
tions and prefers not to integrate unreliable information over time. 

Repetition benefits on search times and accuracy (Kristjánsson & 
Ásgeirsson, 2019) were mostly observed after the first learning trial 
only. This is most likely because of a sudden change of target and dis
tractor features due to the start of a new block of learning trials. Sta
tistical stability over successive search trials can significantly improve 
search performance (Chetverikov et al., 2016), even if the statistical 

stability is irrelevant to the search feature (Corbett & Melcher, 2014). 
Search performance did not improve much after the first trial in our 
experiments, which indicates that the inter-trial priming effects during 
the learning streak were minimal. This is in line with the very small 
integration observed within a learning streak. 

Temporal integration of visual features into ensembles has been 
observed in many studies (Chong & Treisman, 2003, Haberman et al., 
2009; Albrecht & Scholl, 2010; Whiting & Oriet, 2011; Hubert- 
Wallander & Boynton, 2015; Oriet & Hozempa, 2016). Moreover, inte
gration efficiency of temporally presented visual items can be even 
higher than, or at least equal to, integration efficiency of spatially pre
sented items (Florey, Dakin, & Mareschal, 2017; Gorea, Belkoura, & 
Solomon, 2014). Our results with the FDL method are in seeming 
contrast with these studies. One of the main differences between our 
study and previous ones is that implicit measures not requiring explicit 
perceptual judgments were used to assess observers’ representations of 
feature ensembles. This methodological difference is the most likely 
reason for the discrepancy between our findings and those previous 
findings on temporal integration. While our observers spatially inte
grated the orientation information within a single visual search trial to 
encode the distractor orientation distribution, there was little temporal 
integration of orientation distributions across successive trials. Recency 
effects have been observed in temporal integration of certain visual 
features into ensembles, such as size, facial expression and motion di
rection (Hubert-Wallander & Boynton, 2015). Our results point to a 
similar dominant influence of more recent information in the temporal 
integration of ensembles. 

As mentioned before, the orientation distance between the two dis
tractor distributions could influence the integration process. It is 
possible that there might be an optimum distance that could facilitate 
integration. However, the orientation difference that would facilitate 
integration can change depending on task and integration type. For 
example, Fischer and Whitney (2014) observed that the strength of se
rial dependence during orientation judgments weakens when the dif
ference in orientation between the previous and current item exceeds 
approximately 28◦. Utochkin and Yurevich (2016) found evidence of 
integration of different orientations into a single ensemble when the 
orientation difference between the distractor lines was 9◦, but not when 
it was 22.5◦. We varied the orientation distance between the two dis
tributions means from 30◦ to 12◦. Yet, the constant result patterns over 
the three experiments indicates that this distance was not the factor 
preventing integration within the limits we tested. 

In a similar vein, whether separate distributions are perceived to be 
generated from the same source can also influence how they are 
treated4. In Bayesian cue combination terms, the visual system will 
integrate two sources of information, if they are treated as two inde
pendent estimates of the same visual object. This can explain our results 
and it seems likely that the visual system would only integrate infor
mation if it facilitates efficient visual processing. For example, serial 
dependence is considered an adaptive strategy to deal with noise and 
uncertainty in a world where natural scenes are generally stable and 
temporally continuous (Kiyonaga, Scimeca, Bliss, & Whitney, 2017). But 
temporal integration of perceptual information may not be advanta
geous when the visual world changes from moment to moment. Taubert, 
Alais, and Burr (2016) observed that serial dependence only occurred for 
facial features that are generally stable overtime (e.g., gender or 

4 For example, if you are judging the ripeness of berries on a branch, you 
would base your judgment on the color distribution of the visible berries on that 
branch. However, in order to make a more accurate judgment, you can glance 
at the branch from a different location, so the color distribution your visual 
system extracts will change since different berries will become visible to you. 
Your visual system would integrate the two color distributions for a better es
timate of the ripeness of the berries only if the visual system knows that the two 
color distributions were generated from the same branch. 
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identity), but not for more changeable features (e.g., facial expression). 
Speculatively, our results suggest a similar effect of temporal stability on 
priming. 

Temporal integration of visual feature distributions across successive 
visual search displays has been observed before using the FDL method – 
for example a bimodal distribution learned for 2–3 trials is encoded as a 
uniform distribution with no drop between the two peaks but after 8–11 
trials observers learn the bimodality of the distribution (Chetverikov 
et al., 2017b). When there is no temporal uncertainty within a learning 
streak, the visual system seems to be able to integrate feature distribu
tions that are even much more complex than the ones we have used in 
this study. The only methodological difference in our study was the 
alternation in distractor distributions within the learning trials. After 
observing, in Experiment 1, the negative influence of this temporal 
uncertainty within a streak, in our second and third experiments we 
decided to decrease this uncertainty within a streak by increasing the 
overlap between the two distractors. The magnitudes of Bayes factors 
obtained in each individual experiment were low, but the observed ef
fects were all in the same direction. Furthermore, when we combined 
the data from all three experiments, accounting for the between-study 
variability, we saw more conclusive evidence. The results from this 
mini-meta-analysis should be interpreted cautiously since it includes 
data from three different experiments in which the orientation differ
ence between the distractor distributions were different. This can add 
heterogeneity to the aggregate data, which could, in principle, bias the 
results in favor of null models. Nevertheless, all things considered, these 
results still provide a very strong contrast with previous FDL studies 
where significant temporal integration was easily observed. The most 
straightforward conclusion is that the visual system does not integrate 
information across trials in cases where the visual input exhibits tem
poral unreliability, which induces a strong reliance on the most recent 
input. 

Our results suggest that there are strict limits on feature distribution 
learning and that unreliable variance strongly affects the learning. We 
have previously shown limits on what can be learned through FDL 
methods (Chetverikov et al., 2017c) where a certain minimum amount 
of input (in this case set-size) determines whether learning occurs. 
Similarly, a certain amount of continuity and reliability could be another 
prerequisite for detailed encoding of feature distributions during 
sequential presentation (e.g., Chetverikov et al., 2016; Chetverikov 
et al., 2017a; Chetverikov et al., 2017b; Chetverikov et al., 2017c; 
Chetverikov et al., 2020; Hansmann-Roth et al., 2019). 

However, apart from indicating what sort of learning the FDL para
digm can achieve, our results may also reveal how the visual system may 
use the encoded information. Sensory history can be used by the visual 
system to adjust and calibrate itself to uncertain and dynamic environ
ments. For example, passive exposure to visual features can increase 
efficiency in search for outliers. (Kompaniez-Dunigan, Abbey, Boone, & 
Webster, 2015; McDermott, Malkoc, Mulligan, & Webster, 2010; Wissig, 
Patterson, & Kohn, 2013). However, inter-trial priming (Kristjánsson & 
Campana, 2010; Maljkovic & Nakayama, 1994), depends on the role 
assigned to the features (target vs. distractors). This indicates a more 
active interaction between the visual system and the encoded visual 
features with respect to their roles given a visual task. Moreover, the 
detailed feature distributions encoded during learning streaks in FDL 
studies determine which target observers pick when the search display 
includes two targets instead of one (Chetverikov, Campana, & 
Kristjánsson, 2020). In other words, previous studies on priming and 
role reversals (for a review, see Kristjánsson & Campana, 2010) and on 
FDL paradigm (for a review see Chetverikov et al. 2019) strongly suggest 
that encoded feature distributions are utilized by the visual system. 
Here, we tested with FDL methodology whether detailed probabilistic 
feature distributions can be integrated when two different orientation 
distributions are presented in an alternating order. Our results showed 
that the visual system relied heavily on the distractor distribution on the 
last trial with this current method, indicating that the temporal 

integration observed in previous FDL studies is limited to more reliable 
and temporally stable sensory input. 

8. Conclusions 

Our results reveal limits to what can be learned about distractor 
distributions during sequential presentation of search arrays. The visual 
system clearly prefers more reliable input than was available in our 
study. We speculate that the mechanisms revealed in previous FDL 
studies help with learning environmental statistics in stable environ
ments and trial-by-trial variability can interfere with the learning, sug
gesting that the visual system generally assumes that the statistics within 
natural environments are stable. 

CRediT authorship contribution statement 
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Shurygina, O., Kristjánsson, Á., Tudge, L., & Chetverikov, A. (2019). Expectations and 
perceptual priming in a visual search task: Evidence from eye movements and 
behavior. Journal of Experimental Psychology: Human Perception and Performance, 45 
(4), 489. 
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